Comparison of segmentation methods for the automatic analysis of human chromosomes

Authors

DOI:

https://doi.org/10.46502/issn.2710-995X/2021.5.06

Keywords:

automatic analysis of human chromosomes, chromosomes, image segmentation, karyotype, segmentation methods.

Abstract

Chromosomal abnormalities are a common cause of morbidity and mortality in the human population. Chromosome analysis is used in cytogenetics to evaluate the presence of genetic defects and other diseases by visualizing their structure. This procedure is carried out by observing samples using an optical microscope, which turns out to be long and repetitive and becomes a great effort for specialists who must remain, sometimes for hours, observing the visual fields in the microscope to emit a criterion. In this case, an efficient automatic analysis would aid the routine work of the cytogeneticist. Automatic chromosome classification includes three main parts: image preprocessing and segmentation, feature extraction, and subsequent classification. The segmentation stage becomes one of the most important, since it is from this stage that single chromosomes or clusters of chromosomes are detected and isolated for further processing. The present work aims to carry out a review of various methods used for the segmentation of images of human chromosomes. Some of the main techniques and methods recently used in this research area are summarized and the main advantages and limitations of the segmentation methods studied are discussed.

Downloads

Download data is not yet available.

Author Biographies

Carla Maria Alonso Jané, Universidad de Guantánamo. Cuba.

Ms.C. Profesor Auxiliar. Universidad de Guantánamo. Profesor. Procesamiento digital de imágenes médicas.  Cuba.

Miriela Escobedo Nicot, Universidad de Oriente. Cuba.

Dr.C. Profesor Titular. Universidad de Oriente. Profesor. Procesamiento de imágenes y visión por computador. Santiago de Cuba, Cuba.

Goar Orúe Sánchez, Universidad de Guantánamo. Cuba.

Ms.C. Profesor Asistente.  Universidad de Guantánamo. Cuba.

Alexeis Galano Compte, Universidad de Guantánamo. Cuba.

Lic. Profesor Instructor.  Universidad de Guantánamo. Procesamiento digital de imágenes médicas.  Cuba.

References

Agam, G., & Dinstein, I. (1997). Geometric Separation of Partially Overlapping Nonrigid Objects Applied to Automatic Chromosome Classification. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/34.632981

Altinsoy, E., Yilmaz, C., Wen, J., Wu, L., Yang, J., & Zhu, Y. (2019). Raw G-Band Chromosome Image Segmentation Using U-Net Based Neural Network. Artificial Intelligence and Soft Computing, 117-126. Cham: Springer, https://doi.org/10.1007/978-3-030-20915-5_11

Arora, T. (2019). A Novel Approach for Segmentation of Human Metaphase Chromosome Images Using Region Based Active Contours. Int. Arab J. Inf. Technol., 16(1), 132-137

Carothers, A., & Piper, J. (1994). Computer-aided classification of human chromosomes: a review. Statistics and Computing, 4(3), 161-171. https://doi.org/10.1007/BF00142568

Grisan, E., Poletti, E., & Ruggeri, A. (2009, febrero 3). Automatic segmentation and disentangling of chromosomes in Q-band prometaphase images. IEEE Transactions on Information Technology in Biomedicine. Recuperado 30 de agosto de 2021, de https://dl.acm.org/doi/10.1109/TITB.2009.2014464

Jahani, S., Setarehdan, K., & Fatemizadeh, E. (2011). Automatic Identification of Overlapping/Touching Chromosomes in Microscopic Images Using Morphological Operators. 2011 7th Iranian Conference on Machine Vision and Image Processing, MVIP 2011 - Proceedings. https://doi.org/10.1109/IranianMVIP.2011.6121574

Ji, L. (1989). Intelligent splitting in the chromosome domain. Pattern Recognition, 22(5), 519-532. https://doi.org/10.1016/0031-3203(89)90021-6

Ji, L. (1994). Fully automatic chromosome segmentation. Cytometry, 17(3), 196-208. https://doi.org/10.1002/cyto.990170303

Joe Hin Tjio, & Levan, A. (1956). The chromosome number of man. Hereditas: Genetitiskt Arkiv, (Band 42), 80-85.

Karvelis, P., Fotiadis, D. I., Syrrou, M. V., & Georgiou, I. (s. f.). Segmentation of chromosome images based on a recursive watershed transform. In IFMBE Proc. Recuperado 2 de septiembre de 2021, de https://www.researchgate.net/publication/228367656_Segmentation_of_chromosome_images_based_on_a_recursive_watershed_transform

Karvelis, P., Likas, A., & Fotiadis, D. I. (2010). Identifying touching and overlapping chromosomes using the watershed transform and gradient paths. Pattern Recognition Letters, 31(16), 2474-2488. https://doi.org/10.1016/j.patrec.2010.08.002

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321-331. https://doi.org/10.1007/BF00133570

Li, Y., Knoll, J. H., Wilkins, R. C., Flegal, F. N., & Rogan, P. K. (2016). Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing. Microscopy Research and Technique, 79(5), 393-402. https://doi.org/10.1002/jemt.22642

Madian, N., Devaraj, S., Suganthi, S. T., & Brightlin, B. C. (2020). Graph Partitioning approach for Segmentation of Banding Pattern of G-band Metaphase Human Chromosomes. 2020 International Conference on Computer Communication and Informatics (ICCCI), 1-5. Coimbatore, India: IEEE. https://doi.org/10.1109/ICCCI48352.2020.9104123

Menaka, D., & Vaidyanathan, S. G. (2019). Expectation Maximization Segmentation Algorithm for Classification of Human Genome Image. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), 1055-1059. https://doi.org/10.1109/ICCMC.2019.8819686

Nair, R. M., Remya, R., & Sabeena, K. (2015). Karyotyping Techniques of Chromosomes: A Survey. International Journal of Computer Trends and Technology, 22(1), 30-34. https://doi.org/10.14445/22312803/IJCTT-V22P107

Qiu, Y., Chen, X., Li, Y., Chen, W. R., Zheng, B., Li, S., & Liu, H. (2013). Evaluations of auto-focusing methods under a microscopic imaging modality for metaphase chromosome image analysis. Analytical Cellular Pathology (Amsterdam), 36(0), 37. https://doi.org/10.3233/ACP-130077

Qiu, Y., Song, J., Lu, X., Li, Y., Zheng, B., Li, S., & Liu, H. (2014). Feature selection for the automated detection of metaphase chromosomes: performance comparison using a receiver operating characteristic method. Analytical Cellular Pathology (Amsterdam), 565392. https://doi.org/10.1155/2014/565392

Schwartzkopf, W. C., Bovik, A. C., & Evans, B. L. (2005). Maximum-likelihood techniques for joint segmentation-classification of multispectral chromosome images. IEEE Transactions on Medical Imaging, 24(12), 1593-1610. https://doi.org/10.1109/TMI.2005.859207

Shen, X., Qi, Y., Ma, T., & Zhou, Z. (2019). A dicentric chromosome identification method based on clustering and watershed algorithm. Scientific Reports. Recuperado 2 de septiembre de 2021, de https://www.nature.com/articles/s41598-019-38614-7

Somasundaram, D., & Kumar, V. V. (2014). Separation of overlapped chromosomes and pairing of similar chromosomes for karyotyping analysis. Measurement, 48, pp. 274-281, https://doi.org/10.1016/J.MEASUREMENT.2013.11.024

Somasundaram, D., & Nirmala, M. (2010). Automatic segmentation and karyotyping of chromosomes using bio-metrics. INTERACT-2010. https://doi.org/10.1109/INTERACT.2010.5706191

Sun, X., Li, J., Ma, J., Xu, H., Chen, B., Zhang, Y., & Feng, T. (2021, marzo 2). Segmentation of overlapping chromosome images using U-Net with improved dilated convolutions - IOS Press. Recuperado 2 de septiembre de 2021, de https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs201466

Tanvi, T., & Dhir, R. (2014). An Efficient Segmentation Method for Overlapping Chromosome Images. International Journal of Computer Applications, 95, 29-32. https://doi.org/10.5120/16560-4861

Trejo Bahena, N. I., & Sánchez González, D. J. (2012). Biología Celular y Molecular. México: Editorial Alfil, S.A. de C.V. Recuperado de https://library.biblioboard.com/content/9c403008-9442-477a-9a93-acef21651096

Yilmaz, I. C., Yang, J., Altinsoy, E., & Zhou, L. (2018). An Improved Segmentation for Raw G-Band Chromosome Images. 2018 5th International Conference on Systems and Informatics (ICSAI), 944-950. https://doi.org/10.1109/ICSAI.2018.8599328

Published

2021-11-24

How to Cite

Alonso Jané, C. M., Escobedo Nicot, M., Orúe Sánchez, G., & Galano Compte, A. (2021). Comparison of segmentation methods for the automatic analysis of human chromosomes. Orange Journal, 3(5), 53–62. https://doi.org/10.46502/issn.2710-995X/2021.5.06

Issue

Section

Artículos