Antidrepanocytic activity determination of nanoparticles loaded with vanillin by Nuclear Magnetic Resonance
DOI:
https://doi.org/10.46502/issn.2710-995X/2020.3.03Keywords:
Sickle Cell Anemia, vanillin, solid lipid nanoparticles, Nuclear Magnetic Resonance, time delay.Abstract
The antidrepanocity activity on biological samples (whole blood) of solid lipid nanoparticles doped with vanillin (NSL-V) was assessed by measurements the magnetic relaxation of the hydrogen molecules. With this purpose, blood belonging to patients with sickle cell anemia offered by the blood bank of Hospital “Dr. Antonio María Béguez César”. Three experimental groups plus the control were designed. Group 1: 300 ?L of total blood SS. Group 2: 150 ?L of total blood SS plus 150 ?L of formulation NSL with vanillin. Group 3: 150 ?l of total blood SS plus 150 ?l of formulation vanillin. Group 4 (G4):150 ?l of total blood SS plus 150 ?l of formulation NSL. Solid lipid nanoparticles with high encapsulation efficiency where obtained (over 50%), demonstrating the encapsulation capacity of the procedure employed. Using the NMR technique, it was possible to define that NSL-V increases the Td values, which is indicative of the HbS polymerization inhibition process. These evidences support the potential of NSL-V on the treatment of the cell sickle anemia disease.
Downloads
References
Brugnara, C. (2018). Sickle cell dehydration: Pathophysiology and therapeutic applications. Clinical hemorheology and microcirculation, 68(2-3), 187-204.
Cabal, C., Fernández, A., Lores, M., Álvarez, E., Losada, J., Soler, C. & Pérez, E. (1998). Magnetic relaxation in the kinetics of the polymerization of hemoglobin S. Clinical diagnosis and treatment with vanillin. In Proceedings International Society for Magnetic Resonance in Medicine (Vol. 3, p. 1705).
Castan, C, L., del Toro, G. G., Fernández, G, A. A., González P, M., Ortiz B, E., & Lobo T, D. (2012). Encapsulación del 4-Hidroxi-3-metoxibenzaldehído en liposomas modificados con 1-O-alquilgliceroles sintéticos: estudio de su reactividad con el radical DPPH. Revista Cubana de Química, 24(1), 83-90.
Chen, W. R., Yu, Y., Zulfajri, M., Lin, P. C., & Wang, C. C. (2017). Phthalide derivatives from Angelica Sinensis decrease hemoglobin oxygen affinity: a new allosteric-modulating mechanism and potential use as 2, 3-BPG functional substitutes. Scientific reports, 7(1), 1-15.
Deshpande, T. M., Pagare, P. P., Ghatge, M. S., Chen, Q., Musayev, F. N., Venitz, J. & Safo, M. K. (2018). Rational modification of vanillin derivatives to stereospecifically destabilize sickle hemoglobin polymer formation. Acta Crystallographica Section D: Structural Biology, 74(10), 956-964.
Fung, L. M., Narasimhan, C., Lu, H. Z., & Westerman, M. P. (1989). Reduced water exchange in sickle cell anemia red cells: a membrane abnormality. Biochimica et Biophysica Acta (BBA)-Biomembranes, 982(1), 167-172.
Gallagher, P. G. (2017). Disorders of erythrocyte hydration. Blood. The Journal of the American Society of Hematology, 130(25), 2699-2708.
García, A. F., Cabal, C., Losada, J., Álvarez, E., Soler, C., & Otero, J. (2005). In vivo action of Vanillin on delay time determined by magnetic relaxation. Hemoglobin, 29(3), 181-187.
Ghysels, A., Krämer, A., Venable, R. M., Teague, W. E., Lyman, E., Gawrisch, K., & Pastor, R. W. (2019). Permeability of membranes in the liquid ordered and liquid disordered phases. Nature communications, 10(1), 1-12.
Gour, A., Dogra, A., Bhatt, S., & Nandi, U. (2020). Effect of Natural Products on Improvement of Blood Pathophysiology for Management of Sickle Cell Anemia. Botanical Leads for Drug Discovery (pp. 51-65). Springer, Singapore.
Kingwell, B. A., Chapman, M. J., Kontush, A., & Miller, N. E. (2014). HDL-targeted therapies: progress, failures and future. Nature reviews Drug discovery, 13(6), 445-464.
Lester, C. C., & Bryant, R. G. (1991). Water–proton nuclear magnetic relaxation in heterogeneous systems: Hydrated lysozyme results. Magnetic resonance in medicine, 22(1), 143-153.
Lu, C. T., Zhao, Y. Z., Wong, H. L., Cai, J., Peng, L., & Tian, X. Q. (2014). Current approaches to enhance CNS delivery of drugs across the brain barriers. International journal of nanomedicine, 9, 2241.
Oslund, R. C., Su, X., Haugbro, M., Kee, J. M., Esposito, M., David, Y. & Rabinowitz, J. D. (2017). Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate. Nature chemical biology, 13(10), 1081.
Maruyama, T., Fukata, M., & Fujino, T. (2020). Physiological and pathophysiological significance of erythrocyte senescence, density and deformability: Important but unnoticed trinity. Journal of Biorheology, 34(2), 61-70
Menon, R. S., Rusinko, M. S., & Allen, P. S. (1991). Multiexponential proton relaxation in model cellular systems. Magnetic resonance in medicine, 20(2), 196-213.
Morejón, L. D., Jorge, B. R., Sánchez, D. G., Rayas, Y. L., Lezcano, L. A., & Leonard, M. E. S. (2019). Anemia drepanocítica: características generales de los pacientes a su diagnóstico. Revista de Enfermedades no Transmisibles, 9(1), 4-10.
Nelson D, L., Cox M. (2019) Lehninger. Principles of Biochemistry. 7a ed. 1260p. Ed. W.H Freeman & Co. Ltd.
Nigen, A. M., & Manning, J. M. (1977). Inhibition of erythrocyte sickling in vitro by DL-glyceraldehyde. Proceedings of the National Academy of Sciences, 74(1), 367-371.
Torres D, A., del Toro G, G., Valdés R, Y. C., León, J. L., & Merchán, F. (2005). Effect in vitro of synthetic 1-O-alkylglycerols on the transformation and hemolytic activity on the sickle erythrocytes. Bioquimia, 30(4), 101-109.
Sahdev, P., Ochyl, L. J., & Moon, J. J. (2014). Biomaterials for nanoparticle vaccine delivery systems. Pharmaceutical research, 31(10), 2563-2582.
Schubert, M. A., & Müller-Goymann, C. C. (2003). Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. European journal of pharmaceutics and biopharmaceutics, 55(1), 125-131.
Sarkar, H. S., Das, S., Uddin, M. R., Mandal, S., & Sahoo, P. (2017). Selective Recognition and Quantification of 2, 3?Bisphosphoglycerate in Human Blood Samples by a Rhodamine Derivative. Asian Journal of Organic Chemistry, 6(1), 71-75.
Strader, M. B., Liang, H., Meng, F., Harper, J., Ostrowski, D. A., Henry, E. R. & Alayash, A. I. (2019). Interactions of an anti-sickling drug with hemoglobin in red blood cells from a patient with sickle cell anemia. Bioconjugate chemistry, 30(3), 568-571.
Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S. & Lichtner, P. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature genetics, 46(11), 1173-1186.